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Joseph W. Mckean Allen T. Mathemat
Craig Copyright 2013 ical
Pearson Education, Inc.
Statistics.
Eruin Kreyzig; 1. Metric space Functiona
Introductory Functional Metric space, Further examples of metric spaces, Open | | Analysis

Analysis With Applications,
JOHN WILEY &SONS,
New York.

set, closed set , Neighborhood, convergence, Cauchy
sequence, completeness, completion of metric space.

2. Normed Spaces, Banach Spaces

Vector space , Normed Space , Banach Space, Further
properties of Normed spaces, Finite Dimensional
Normed Spaces and subspaces , compactness and finite
dimension, Linear operators, bounded and continuous
linear operators, Linear functionals on finite-
dimensional spaces, Normed spaces of operators, Dual
space.

3. Inner Product Spaces. Hilbert Spaces

Inner product space, Hilbert space, further properties of
inner product spaces, orthogonal complements, and




direct sums, Orthogonal sets and sequences, Hilbert -
Adjoint Operator, Self-Adjoint, Unitary, and Normal
Operators.

4. Fundamental Theorems for Normed

and Banach Spaces.

Zorn’s Lemma, Hahn-Banach Theorem for
Complex Vector Spaces and Normed Spaces,
Adjoint Operator, Reflexive Spaces.
Application to bounded linear functional on
Cla, b].

David M. Burton,
Introduction to Modern
Abstract Algebra,
University of New
Hampshire, Addison
Wesley publishing
Company, 1967.
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Group Theory

1) Definition and Examples of Groups

Introduces groups, their axioms (closure, associativity,
identity, inverses), and examples like Z, Q and symmetry
groups.

2) Certain Elementary Theorems on Groups

Covers basic theorems, such as uniqueness of identity,
inverses and cancellation laws.

3) Two Important Groups

The symmetric groups S,, and cyclic groups Z,, as
fundamental examples.

4) Subgroups

Defines subgroups, criteria for subsets to be subgroups,
and examples.

5) Normal Subgroups and Quotient Groups

The normal subgroups, cosets, and constructing quotient
groups.

6) Homomorphisms

Group homomorphisms, kernels, images, and
isomorphism theorems.

7) The Fundamental Theorems

The First, Second, and Third Isomorphism Theorems.
Ring Theory

1) Definition and Elementary Properties of Rings
Introduces rings, their axioms (closure, associativity,
distributivity, additive identity, inverses), and examples
(Z,+,.). Discusses properties such as commutativity,
unity, and zero divisors.

2) ldeals and Quotient Rings

Algebra(Gr
oup and
Ring
Theory)




Defines ideals (subsets closed under addition and
absorption by ring elements). Explains how ideals
generalize normal subgroups, and constructs quotient
rings R/I. Examples include principal ideals in Z.

3) Fields

Fields as commutative rings where every non-zero
element has a multiplicative inverse. Examples: Q, R, C,
and finite fields Z,, where p is prime. Briefly introduces
field extensions.

4) Certain Special Ideals

Prime ideals P in the ring R (where R/P is an integral
domain)

Maximal ideals M in the ring R (where R/M is a field).
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1.11 The completeness axiom
1.12 Some properties of the supremum . 9

1.13 Properties of the integers deduced from the
completeness axiom .. 10

1.14 The Archimedean property of the real-number

system . . ... 10
1.15 Rational numbers with finite decimal representation
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1.19 The Cauchy-Schwarz inequality. 13
Chapter 2: Some Basic Notions of Set Theory
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1- Maunder C.R. F.,, Homotopy Theory ( homotopic continuous maps and Algebraic
Algebraic Topology, | spaces, same homotopy type, relative homotopy, Topology
Cambridge contractible spaces , retraction, deformation retraction,

University Press, strong deformation retraction, Path connected spaces,
1980. Fundamental group, induced homomorphism of
Chapter Pages fundamental groups).
Chapter 2 25-30
Chapter 3 63-70

2- Kosinowski C. K. A
first course in
Algebraic Topology,

Cambride University
Press, 1980.
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2.11 Finite and infinitesets . ........ 38
2.12 Countable and uncountable sets . . 39
2.13 Uncountability of the real-number system........
39
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5.6 One-sided derivatives and infinite derivatives . . ... ..
107
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110
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111
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.. 141

7.4 Linear properties... .......... 142
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Numerical Analysis, 9t
edition: by Richard L.
Burden and J. Douglas
Faires.

1//The errors (round off error, absolute, related error)
2//Solutions of equation in one variable (The bisection
method, fixed point method, Newton's

method and its extensions, secant method, false
position method, error analysis for iterative

methods, multiple roots, Aitken's method)
3//Iterative technique in matrix algebra (The Jacobi and
Gauss-Siedel iterative techniques, relaxation techniques
for solving linear systems, the conjugate gradient)
4//Boundary value problems for ordinary differential
equations (Shooting method, finite

difference method, Rayleigh Ritz method)
5// Initial value problems for ordinary differential
equations (Euler's method, Runge-Kutta

methods, multistep method, extrapolation method,
higher order Taylor methods)
6//Interpolation (Lagrange polynomial, divided
differences)
7//Numerical differentiation and integration
(Richardson's extrapolation, Trapezoidal and

. . 3 cr
Simpson's rules, Simpson's s rule, midpoint rule,
composite rules).

Numerical
Analysis

1- Theory and problems of
Differential Equations:
Ayres Frank (1-40, 87-132,
132- 87)

2-Lectures of MSc :
https://faculty.uobasrah.edu
ig/portal/ba9a56ce0adbfa26
e8ed9el0b2cc8f46/teaching
3-Martin Hermann&
Masoud Saravi, A First
Course in Ordinary
Differential Equations
Chapter 5(119-135)

* General definitions of differential equations (ordinary
and partial) (variables, order, degree,

classification of equations, differential operator with
properties). (refs:1,2)

* Laplace Transform (Definition and Properties with
Transformation Formulas for Functions)

(refs:1,2)

* Methods for Solving Partial Differential Equations
Analytically (refs:1,2)

(Direct Integration ref.1, Separation of VVariables ref.1,
Differential Operator ref.1,

Laplace Transform ref.1, Travelling Wave ref.2,
Similarity Transform ref.2)

* Definition of Boundary Value Problem with Some
Simple Applications. ref.2

* Methods for Solving Partial Differential Equations
Numerically(Finite Differences, Finite

Elements, Semi-Analytical Methods (Adomian Analysis,
Iterative Variation)) ref.2

* Systems of First Order Linear Differential Equations.
Ref. 3

- Transforming Higher Order Equations into a System of
Equations. Ref. 3

- Methods for Solving Systems of Equations (Eigenvalues
and Vectors, Laplace Transform)

and Studying the Solution behavior. Ref. 3

Applied
Mathematics




